Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cem Cüneyt Ersanlı, ${ }^{\text {a }}$, Ciğdem Albayrak, ${ }^{\text {b }}$ Mustafa Odabașoğlu ${ }^{\text {b }}$ and Ahmet Erdönmez ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.087$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(2-Hydroxyphenyliminomethylene)phenol

The asymmetric unit of the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$, consists of two crystallographically independent molecules which are essentially planar and are approximately orthogonal to each other. These two molecules are linked by an O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and display two intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972; Garnovski et al., 1993). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964; Moustakali et al., 1978; Hadjoudis et al., 1987). Based on studies of some thermochromic and photochromic Schiff base compounds, it has been proposed that molecules exhibiting monochromism are planar, while those exhibiting photochromism are non-planar (Moustakali et al., 1978). Our structural investigations of Schiff bases (Kazak et al., 2000; Ersanlı et al., 2003; Odabaşoğlu et al., 2003) have led us to examine the title compound, (I).

(I)

The asymmetric unit of (I) consists of two crystallographically independent, but nearly identical, molecules $(A$ and B) linked by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 1 and

Figure 1
ORTEP view (Burnett \& Johnson, 1996; Farrugia, 1997) of the asymmetric unit of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. The open dashed lines indicate hydrogen bonds.

Received 28 January 2004 Accepted 10 February 2004 Online 20 February 2004

Figure 2
CAMERON (Watkin et al., 1996) packing diagram for (I), showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding intercations as dashed lines. Ellipsoids are drawn at the 20% probability level. The H atoms are represented as spheres of arbitrary radius.

Table 2). The two molecules make a dihedral angle of 73.07 (4) ${ }^{\circ}$. They are both roughly planar, the largest deviation being 0.225 (2) \AA at C 2 for molecule A and 0.160 (2) \AA at atom C6 A for molecule B. However, the benzene ring C1-C6 (C1A-C6A) is slightly twisted with respect to the $\mathrm{C} 1-$ $\mathrm{N} 1=\mathrm{C} 7-\mathrm{C} 8(\mathrm{C} 1 A-\mathrm{N} 1 A=\mathrm{C} 7 A-\mathrm{C} 8 A)$ moiety, as indicated by the value of the dihedral angle between these planes $12.3(1)^{\circ}$ [9.7 (3) ${ }^{\circ}$. The two other benzene rings, C8-C13 and $\mathrm{C} 8 A-\mathrm{C} 13 A$, are less twisted with respect to the imino groups, the dihedral angles being 3.5 (1) and $1.1(3)^{\circ}$, respectively.

The $\mathrm{C}-\mathrm{O}$ (hydroxyl) bonds [1.350 (2) and 1.355 (3) \AA in molecules A and B, respectively] indicate single-bond character, whereas the $\mathrm{N}-\mathrm{C}$ bonds [1.286 (2) and 1.278 (3) \AA in molecules A and B, respectively] show double-bond character. These bond lengths are consistent with typical values reported in related compounds (Kevran et al., 1996; Elerman \& Elmalı, 1998). The enol-imine tautomeric form is favoured over the keto-amine form.

There are strong intramolecular hydrogen bonds $\mathrm{O} 1-$ $\mathrm{H} 1 \cdots \mathrm{~N} 1$ and $\mathrm{O} 1 A-\mathrm{H} 1 A \cdots \mathrm{~N} 1 A$ (Table 2). The sum of the van der Walls radii of O and $\mathrm{N}(3.07 \AA$; Bondi, 1964) is significantly longer than the $\mathrm{O} \cdots \mathrm{N}$ hydrogen-bond length; similar results were observed in N -(3,5-dichorophenyl)naphthaldimine [2.570 (3) \AA; Elmali et al., 1998] and in 5-chloro-2-[(2-hydroxybenzylidene)aminomethyl]phenol [2.599 (3) A; Kevran et al., 1996]. The packing of the molecules within the crystals is governed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions (Table 2 and Fig. 2)

Experimental

The title compound, (I), was prepared as described by Ersanlı et al. (2003), using salicylaldehyde and 4-hydroxyaniline as starting materials. The product was recrystallized from ethanol and well shaped crystals of (I) were obtained by slow evaporation of an ethanol solution (yield 85%; m.p. $405-407 \mathrm{~K}$).

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$
$M_{r}=213.23$
Monoclinic, $P 2_{1} / c$
$a=22.041$ (5) A
$b=10.820$ (5) \AA
$c=8.924(5) \AA$
$\beta=91.550(5)^{\circ}$
$V=2127.4(16) \AA^{3}$
$Z=8$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.973, T_{\text {max }}=0.990$
28099 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.087$
$S=0.73$
4693 reflections
295 parameters
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7947
reflections
$\theta=1.9-27.2^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, brown
$0.38 \times 0.26 \times 0.12 \mathrm{~mm}$

4693 independent reflections
1919 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.129$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-25 \rightarrow 28$
$k=-13 \rightarrow 13$
$l=-11 \rightarrow 11$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0434 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{N} 1$	$1.423(2)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.285(2)$
$\mathrm{C} 1 A-\mathrm{N} 1 A$	$1.418(2)$	$\mathrm{C} 7 A-\mathrm{N} 1 A$	$1.278(2)$
$\mathrm{C} 4-\mathrm{O} 2$	$1.3741(19)$	$\mathrm{C} 9-\mathrm{O} 1$	$1.350(2)$
$\mathrm{C} 4 A-\mathrm{O} 2 A$	$1.375(2)$	$\mathrm{C} 9 A-\mathrm{O} 1 A$	$1.355(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$116.91(15)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.68(16)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$124.66(15)$	$\mathrm{N} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A$	$122.08(18)$
$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{N} 1 A$	$116.90(17)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$119.97(16)$
$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{N} 1 A$	$125.13(19)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$120.53(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$118.30(15)$	$\mathrm{O} 1 A-\mathrm{C} 9-\mathrm{C} 10 A$	$118.5(2)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$122.13(15)$	$\mathrm{O} 1 A-\mathrm{C} 9 A-\mathrm{C} 8 A$	$121.35(19)$
$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{O} 2 A$	$122.93(17)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$124.07(14)$
$\mathrm{C} 3 A-\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 2 A$	$117.69(18)$	$\mathrm{C} 7 A-\mathrm{N} 1 A-\mathrm{C} 1 A$	$122.12(17)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$179.91(15)$	$\mathrm{N} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{C} 9 A$	$-0.8(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-3.4(3)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-12.5(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$176.67(17)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$167.90(17)$
$\mathrm{C} 1 A-\mathrm{N} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A$	$179.57(17)$	$\mathrm{C} 7 A-\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{C} 6 A$	$-9.9(3)$
$\mathrm{N} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{C} 13 A$	$179.57(18)$	$\mathrm{C} 7 A-\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	$170.83(17)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 1$	0.82	1.81	$2.5465(19)$	149
O1 $A-\mathrm{H} 1 A \cdots \mathrm{~N} 1 A$	0.82	1.86	$2.591(2)$	147
O2-H21 $\cdots \mathrm{O}^{1}$	$0.878(14)$	$1.889(14)$	$2.757(2)$	$169.9(18)$
O2A-H20 \cdots O2	$0.847(15)$	$2.006(15)$	$2.852(2)$	$177(2)$
Symmetry code: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$				

All H atoms, except for those of the two terminal hydroxy groups (O 2 and $\mathrm{O} 2 A$), were placed in calculated positions $(\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA$), with $U_{\text {iso }}$ values constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for the hydroxyl-group H atom and $1.2 U_{\text {eq }}$ for the remaining H atoms. The coordinates of the H atoms of the two
terminal hydroxy groups were refined with the $\mathrm{O}-\mathrm{H}$ distances restrained to $0.82(2) \AA$ and isotropic displacement parameters constrained to be $1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Calligaris, M., Nardin, G. \& Randaccio, L. (1972). Coord. Chem. Rev. 7, 385403.

Cohen, M. D., Schmidt, G. M. J. \& Flavian, S. (1964). J. Chem. Soc. pp. 20412051.

Elerman, Y. \& Elmalı, A. (1998). Acta Cryst. C54, 529-531.
Elmali, A., Elerman, Y., Svoboda, I. \& Fuess, H. (1998). Acta Cryst. C54, 974 976.

Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. \& Erdönmez, A. (2003). Acta Cryst. C59, o601-o602.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Garnovski, A. D., Nivorozhkin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Hadjoudis, E., Vitterakis, M., Moustakali, I. \& Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.
Kazak, C., Aygün, M., Turgut, G., Odabaşoğlu, M., Özbey, S. \& Büyükgüngör, O. (2000). Acta Cryst. C56, 1044-1045.

Kevran, S., Elmalı, A. \& Elerman, Y. (1996). Acta Cryst. C52, 3256-3258.
Moustakali, I., Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Goesmann, H. (2003). Acta Cryst. C59, o234-o236.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

