Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cem Cüneyt Ersanlı,^a* Çiğdem Albayrak,^b Mustafa Odabaşoğlu^b and Ahmet Erdönmez^a

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.043 wR factor = 0.087 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The asymmetric unit of the title compound, $C_{13}H_{11}NO_2$, consists of two crystallographically independent molecules which are essentially planar and are approximately orthogonal to each other. These two molecules are linked by an O- $H \cdots O$ hydrogen bond and display two intramolecular O- $H \cdots N$ hydrogen bonds.

4-(2-Hydroxyphenyliminomethylene)phenol

Comment

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris *et al.*, 1972; Garnovski *et al.*, 1993). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen *et al.*, 1964; Moustakali *et al.*, 1978; Hadjoudis *et al.*, 1987). Based on studies of some thermochromic and photochromic Schiff base compounds, it has been proposed that molecules exhibiting monochromism are planar, while those exhibiting photochromism are non-planar (Moustakali *et al.*, 1978). Our structural investigations of Schiff bases (Kazak *et al.*, 2000; Ersanlı *et al.*, 2003; Odabaşoğlu *et al.*, 2003) have led us to examine the title compound, (I).

The asymmetric unit of (I) consists of two crystallographically independent, but nearly identical, molecules (Aand B) linked by an O-H···O hydrogen bond (Fig. 1 and

ORTEP view (Burnett & Johnson, 1996; Farrugia, 1997) of the asymmetric unit of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. The open dashed lines indicate hydrogen bonds.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 28 January 2004 Accepted 10 February 2004 Online 20 February 2004

CAMERON (Watkin et al., 1996) packing diagram for (I), showing the O-H···O hydrogen-bonding intercations as dashed lines. Ellipsoids are drawn at the 20% probability level. The H atoms are represented as spheres of arbitrary radius.

Table 2). The two molecules make a dihedral angle of $73.07 (4)^{\circ}$. They are both roughly planar, the largest deviation being 0.225 (2) Å at C2 for molecule A and 0.160 (2) Å at atom C6A for molecule B. However, the benzene ring C1-C6 (C1A-C6A) is slightly twisted with respect to the C1-N1=C7-C8 (C1A-N1A=C7A-C8A) moiety, as indicated by the value of the dihedral angle between these planes $12.3 (1)^{\circ} [9.7 (3)^{\circ}]$. The two other benzene rings, C8–C13 and C8A-C13A, are less twisted with respect to the imino groups, the dihedral angles being 3.5 (1) and 1.1 (3) $^{\circ}$, respectively.

The C–O (hydroxyl) bonds [1.350 (2) and 1.355 (3) Å in molecules A and B, respectively] indicate single-bond character, whereas the N-C bonds [1.286 (2) and 1.278 (3) Å in molecules A and B, respectively] show double-bond character. These bond lengths are consistent with typical values reported in related compounds (Kevran et al., 1996; Elerman & Elmalı, 1998). The enol-imine tautomeric form is favoured over the keto-amine form.

There are strong intramolecular hydrogen bonds O1-H1···N1 and O1A-H1A···N1A (Table 2). The sum of the van der Walls radii of O and N (3.07 Å; Bondi, 1964) is significantly longer than the $O \cdots N$ hydrogen-bond length; similar results were observed in N-(3,5-dichorophenyl)naphthaldimine [2.570 (3) Å; Elmali et al., 1998] and in 5-chloro-2-[(2-hydroxybenzylidene)aminomethyl]phenol [2.599 (3) Å; Kevran et al., 1996]. The packing of the molecules within the crystals is governed by O-H···O hydrogenbonding interactions (Table 2 and Fig. 2)

Experimental

The title compound, (I), was prepared as described by Ersanlı et al. (2003), using salicylaldehyde and 4-hydroxyaniline as starting materials. The product was recrystallized from ethanol and well shaped crystals of (I) were obtained by slow evaporation of an ethanol solution (yield 85%; m.p. 405-407 K).

Crystal data

-	
$C_{13}H_{11}NO_2$	$D_x = 1.331 \text{ Mg m}^{-3}$
$M_r = 213.23$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters fro
a = 22.041 (5) Å	reflections
b = 10.820 (5) Å	$\theta = 1.9-27.2^{\circ}$
c = 8.924 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 91.550 (5)^{\circ}$	T = 293 (2) K
V = 2127.4 (16) Å ³	Prism, brown
Z = 8	$0.38 \times 0.26 \times 0.12$
Stoe IPDS-II diffractometer	4693 independent i
Absorption correction: by	$R_{\text{int}} = 0.129$
integration (<i>X-RED32</i> ;	$\theta_{\text{max}} = 27.2^{\circ}$
Stoe & Cie. 2002)	$h = -25 \rightarrow 28$
$T_{\min} = 0.973, T_{\max} = 0.990$ 28099 measured reflections	$k = -13 \rightarrow 13$ $l = -11 \rightarrow 11$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.087$ S = 0.734693 reflections 295 parameters

Cell parameters from 7947 reflections $\theta = 1.9-27.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K Prism. brown $0.38 \times 0.26 \times 0.12 \text{ mm}$ 4693 independent reflections

1919 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.129$ $\theta_{\rm max} = 27.2^{\circ}$ $h = -25 \rightarrow 28$ $k = -13 \rightarrow 13$ $= -11 \rightarrow 11$

H atoms treated by a mixture of
independent and constrained
refinement
$w = 1/[\sigma^2(F_o^2) + (0.0434P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.423 (2)	C7-N1	1.285 (2)
C1A - N1A	1.418 (2)	C7A - N1A	1.278 (2)
C4-O2	1.3741 (19)	C9-O1	1.350 (2)
C4A - O2A	1.375 (2)	C9A-O1A	1.355 (2)
C2-C1-N1	116.91 (15)	N1 - C7 - C8	121.68 (16)
C6-C1-N1	124.66 (15)	N1A - C7A - C8A	122.08 (18)
C2A - C1A - N1A	116.90 (17)	O1-C9-C10	119.97 (16)
C6A - C1A - N1A	125.13 (19)	O1-C9-C8	120.53 (15)
C3-C4-O2	118.30 (15)	O1A-C9A-C10A	118.5 (2)
O2-C4-C5	122.13 (15)	O1A-C9A-C8A	121.35 (19)
C5A - C4A - O2A	122.93 (17)	C7-N1-C1	124.07 (14)
C3A - C4A - O2A	117.69 (18)	C7A - N1A - C1A	122.12 (17)
C1 - N1 - C7 - C8	179.91 (15)	N1A - C7A - C8A - C9A	-0.8(3)
N1-C7-C8-C9	-3.4(3)	C7-N1-C1-C6	-12.5(3)
N1-C7-C8-C13	176.67 (17)	C7-N1-C1-C2	167.90 (17)
C1A - N1A - C7A - C8A	179.57 (17)	C7A-N1A-C1A-C6A	-9.9(3)
N1A-C7A-C8A-C13A	179.57 (18)	C7A - N1A - C1A - C2A	170.83 (17)

l able 2			
Hydrogen-bonding g	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···N1	0.82	1.81	2.5465 (19)	149
$O1A - H1A \cdots N1A$	0.82	1.86	2.591 (2)	147
$O2-H21\cdots O1^{i}$	0.878 (14)	1.889 (14)	2.757 (2)	169.9 (18)
$O2A - H20 \cdot \cdot \cdot O2$	0.847 (15)	2.006 (15)	2.852 (2)	177 (2)

Symmetry code: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.

All H atoms, except for those of the two terminal hydroxy groups (O2 and O2A), were placed in calculated positions (O-H = 0.82 Å and C-H = 0.93 Å), with U_{iso} values constrained to be 1.5 U_{eq} of the carrier atom for the hydroxyl-group H atom and $1.2U_{eq}$ for the remaining H atoms. The coordinates of the H atoms of the two terminal hydroxy groups were refined with the O–H distances restrained to 0.82 (2) Å and isotropic displacement parameters constrained to be $1.2U_{eq}(O)$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.
- Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.
- Elerman, Y. & Elmalı, A. (1998). Acta Cryst. C54, 529-531.
- Elmali, A., Elerman, Y., Svoboda, I. & Fuess, H. (1998). Acta Cryst. C54, 974–976.
- Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2003). *Acta Cryst.* C**59**, o601–o602.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Garnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
- Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). *Tetrahedron*, **43**, 1345–1360.
- Kazak, C., Aygün, M., Turgut, G., Odabaşoğlu, M., Özbey, S. & Büyükgüngör, O. (2000). Acta Cryst. C56, 1044–1045.
- Kevran, S., Elmalı, A. & Elerman, Y. (1996). Acta Cryst. C52, 3256-3258.
- Moustakali, I., Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234–o236.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1996). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.